

Journal of Organometallic Chemistry 510 (1996) 197-206

Chiroptische Effekte von Lanthanoidorganylen mit optisch aktiven Liganden III¹. Erschließung wohldefinierter chiraler Organosamarium(III) - Verbindungen durch Umsetzung von Tris(cyclopentadienyl) samarium mit (1S,2R,5R) - Isomenthol, (R) -(+) - Isobutyllactat und (R) -(+) - Methyl-p-tolylsulfoxid

Annette Steudel, Jens Stehr, Eric Siebel, R. Dieter Fischer *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany Eingegangen den 13. Juli 1995; in revidierter Form den 11. August 1995

Abstract

While each of the three organosamarium(III) title complexes: $[Cp_2Sm{\mu-OC_{10}H_{19}}]_2$ (5; $Cp = C_5H_5$, $OC_{10}H_{19} =$ isomenthoxide), $[Cp_2Sm{\mu-OCH(Me)COO^iBu}]_2$ (6) and $[Cp_3SmOS(Me)-p-C_6H_4Me]$ (7) contains a chiral ligand atom (i.e. C or S) next to the metal-bonded oxygen atoms, only the dinuclear compounds 5 and, even better, 6 display (below ca. 600 nm) significant circular dichroism of discrete f-f-crystal field transitions. According to a successful single-crystal X-ray study of 5, the cyclohexyl ring of its (1S,2R,5R)-isomenthoxide ligand adopts a conformation with axial OSm- and ⁱPr-substituents, which is energetically less favourable at least for neat (1S,2R,5R)-isomenthol.

Zusammenfassung

Obwohl jeder der drei neuen Organosamarium(III)-Komplexe: $[Cp_2Sm{\mu-OC_{10}H_{19}}]_2$ (5; $Cp = C_5H_5$, $OC_{10}H_{19} = Isomentholat$), $[Cp_2Sm{\mu-OCH(Me)COO^iBu}]_2$ (6) und $[Cp_3SmOS(Me)-p-C_6H_4Me]$ mindestens ein chirales Ligandenatom (C oder S) unmittelbar am metallkoordinierten O-Atom enthält, zeigen nur die dimeren Systeme 5 und noch ausgeprägter 6 (unterhalb von ca. 600 nm) signifikanten Circulardichroismus von f-f-Kristallfeldübergängen des Sm³⁺-Ions. Auf Grund einer erfolgreichen Kristallstrukturanalyse von 5 liegt der Cyclohexylring des (1S,2R,5R)-Isomentholatliganden ausschließlich in der Konformation mit *axialen* OSm- und ⁱPr-Substituenten vor, die für freies (1S,2R,5R)-Isomenthol energetisch deutlich unvorteilhafter ist.

Keywords: Organosamarium complexes; Chirality; Isomenthoxide structure; f-f-Circular dichroism

1. Einleitung

Organolanthanoidkomplexe mit Alkoxidliganden, deren sauerstofftragende C-Atome zugleich Chiralitätszentren sind, bieten u.a. auch wegen der besonderen Festigkeit der Ln-O-Bindung gute Voraussetzungen zur erfolgreichen Beobachtung chiroptischer Effekte von f-f-Kristallfeldübergängen des Ln^{q+}-Chromophors [1,2]. Die nähere Untersuchung zweier Yb(III)-Komplexe vom Typ: $[Cp'_2YbOR]_n$ hat allerdings auch unerwartete Konsequenzen aufgezeigt: Komplex 1 mit $Cp' = CH_3C_5H_4$ und OR = (R)-(-)-Mentholat reagiert mit Tetrahydrofuran (THF) spontan weiter zu racemischem $[Cp'_2Yb(\mu$ -tetrahydrofuran-2-hydroxylat)]_2 (2 [1]), während die Alkoxidkomplexe $[Cp'_2Yb-(S)-(+)-2$ butanolat]_n mit $Cp' = C_5H_5$ (3) und $CH_3C_5H_4$ (4) bislang weder in THF- (3) noch in CH_2Cl_2 -Lösung (4) f-f-Circulardichroismus (f-f-CD) erkennen ließen [2].

¹ II. Mitteilung: vgl. Ref. [2]. Professor Henri Brunner zum 60. Geburtstag gewidmet.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05922-9

In der Erwartung, durch eine größere Variation sowohl von Ln als auch von OR zu einem besseren Verständnis des Verhaltens potentiell chiraler Organolanthanoid-Systeme zu gelangen, haben wir nun die zwei neuen Sm(III)-Alkoxide $[Cp_2Sm{\mu-(1S,2R,5R)}]$ isomentholat]₂ (5) und $[Cp_2Sm{\mu-(R)-(+)-isobuty}]$ $[actat]_{2}$ (6) dargestellt und näher untersucht sowie deren Eigenschaften auch mit denen des Addukts: $[Cp_3SmOS(Me)-p-C_6H_4Me]$ (7) verglichen, dessen zwei Homologe mit Pr (7a) und Yb (7b) bereits röntgenstrukturanalytisch aufgeklärt werden konnten [3]. Komplex 5 ist ein Stereoisomer des selbst noch nicht beschriebenen Sm-Homologen von 1, während 6 sehr wahrscheinlich isostrukturell mit seinen zwei Homologen 6a (Ln = Pr [3]) und 6b (Ln = Yb [2]) ist, deren Molekülstrukturen das Baumuster [Cp₂Ln{ μ - $OCH(Me)COO^{i}Bu\}_{2}$ zeigen.

2. Darstellung und allgemeine Eigenschaften von 5, 6, 6c (Ln = Lu) und 7

Sämtliche Komplexe wurden durch Umsetzung von $(C_5H_5)_3$ Sm bzw. $(C_5H_5)_3$ Lu (6c) mit Isomenthol, Isobutyllactat oder Methyl-p-tolylsulfoxid jeweils im strengen Molverhältnis 1:1 dargestellt. Während die Protonierungsreaktionen (mittels Alkohol) bei tiefen Temperaturen durchgeführt werden mußten, erfolgte die Sulfoxid-Addition bei Raumtemperatur. Die Ausbeuten lagen bei mindestens 80%. Alle Verbindungen sind gut löslich in Toluol (5,6) und Dichlormethan (5-7) sowie luft- und feuchtigkeitsempfindlich.

Das Massenspektrum (MS) von 5 ähnelt dem von 6a [2] dahingehend, daß das Fragment mit dem höchsten m/z-Wert wieder dem zweikernigen Molekülion entspricht, das bereits einen C₅H₅-Liganden verloren hat; somit spricht das MS hier für einen zweikernigen Aufbau. Das Auftreten selbst relativ intensiver Fragmente vom Typ: Cp'₃Ln⁺ (wie auch im Fall von 5 m/z = 347; 10%) ist für Alkoxidkomplexe [Cp₂ Ln(μ -OR)]₂ nicht ungewöhnlich [4]. In den IR-Spektren von 6 und 6c deuten die gegenüber freiem Isobutyllactat stark erniedrigten ν (CO)-Frequenzen der Carboxylgruppen (1684 bzw. 1685 cm⁻¹; freies Lactat: 1735 cm⁻¹) an, daß beide Komplexe wie auch 6a [3] und 6c [2] wieder metallkoordinierte Carboxylat-O-Atome enthalten. Im IR-Spektrum von 7 erscheint wie im Fall seiner Homologen 7a und 7b [3] die ν (SO)-Schwingung bei 1025 ± 3 cm⁻¹ (freies Methyl-*p*-tolylsulfoxid: 1048 cm^{-1}), so daß auch in 7 der Sulfoxidligand Okoordiniert sein dürfte.

3. Molekülstrukturen von 5, 6 und 7

Ein optimaler Einkristall von 5 konnte unschwer aus einer konzentrierten Toluol-Lösung bei ca. 0°C gewon-

Tabelle	1
---------	---

Relevante	Parameter	fiir	die	Struk	turana	lvse	von	5

Relevante Parameter für die Strukti	iranalyse von 5
Summenformel	C ₄₀ H ₅₈ O ₂ Sm ₂
Molmasse (g mol ^{-1})	871.56
Kristalldimensionen (mm ³)	0.4×0.4×0.3
Temperatur (K)	293(2)
Wellenlänge (Å)	0.71073
Kristallsystem	Orthorhombisch
Raumgruppe	P212121
Zellparameter (pm)	a = 1245.3(2)
	b = 1429.3(5)
	c = 2096.2(8)
Volumen ($\times 10^6$ pm ³)	3731(2)
Z	4
Dichte (berechnet) ($g \text{ cm}^{-3}$)	1.552
Absorptionskoeffizient μ (mm ⁻¹)	3.148
F(000)	1752
Meßbereich Θ (°)	2.25 bis 25.0
Indices	$-1 \le h \le 14, -1 \le k \le 17,$
	$-1 \leq l \leq 24$
Symmetrisch unabhängige Reflexe	4406 [R(int) = 0.0148]
Beobachtete Reflexe $[l > 2\sigma(l)]$	3806
Verfeinerte Parameter	404
<i>R</i> -Wert	$R_1 = 0.0312 \ wR_2 = 0.0627$
R-Wert für alle Reflexe	$R_1 = 0.0421 \ wR_2 = 0.0661$
Gewichtung	$w = [\sigma^2(F^2) + (0.0314P)^2]^{-1}$
	mit $P = (F_0^2 + 2F_c^2)3^{-1}$
Absoluter Strukturparameter	0.00(3)
Restelektronendichte (max/min) (eÅ ⁻³)	0.904/-0.555

nen werden. Tabelle 1 enthält einige für die Strukturanalyse relevante (Kristall-) Parameter, und Tabelle 2 eine Auswahl von Atomabständen und Winkeln. In Abb. 1 und 2 sind verschiedene Perspektiven der Molekülstruktur von 5 wiedergegeben. Der Komplex ist erwartungsgemäß [1] zweikernig; allerdings besteht er aus zwei nicht-äquivalenten Molekülhälften. Das Sauerstoffatom und die Isopropylgruppe besetzen axiale Positionen im Cyclohexan-Sessel (und die Methylgruppe entsprechend eine äquatoriale Position). Standard-Konformationsanalysen lassen dagegen für freies (1S,2R,5R)-Isomenthol eine Vorzugskonformation mit axialer CH₃-Gruppe erwarten. Die Rönstgenstrukturanalyse von (+)-Isomenthyl-*p*-bromphenylcarbamat (8) als dem bislang offenbar einzigen kristallographisch untersuchten Isomenthoxy-Derivat [5] hatte ergeben, daß hier die asymmetrische Einheit je ein Molekül mit axialer und zwei Moleküle mit äquatorialer Methylgruppe enthält [6]. Während die Mehrzahl der C-C-Bindungen in den Isomenthylfragmenten von 5 und 8 Abstände in der Nähe des Mittelwerts von 1.54 Å aufweisen, ist im Molekül von 8 mit einer äquatorialen Methylgruppen der C(2)-C(7)-Abstand signifikant nach 1.65 Å aufgeweitet [6]. In 5 liegt der entsprechende Abstand bei nur 1.59(2) Å. Andererseits sind die C-O-Abstände in 5 mit 1.443(10) bzw. 1.456(10) Å geringfügig kürzer als in 8 (1.50 Å).

Einfachen Strukturmodellen für 5 zufolge sollten Iso-

Tabelle 2 Ausgewählte Bindungsabstände (pm) und Winkel (°) von 5. Cent = Ringzentrum; $(C1-H1) \cdots (C11-H11) =$ Diederwinkel

$Sm1 \cdot \cdot \cdot Sm2$	364.8(15)		
Sm1-Cent1	245.7(40)	Sm2-Cent3	247.0(60)
Sm1-Cent2	247.1(50)	Sm2-Cent4	247.6(60)
Sm1-O1	234.5(5)	Sm2-O1	229.0(5)
Sm1-O2	230.7(5)	Sm2–O2	236.5(5)
Sm1-C101	272.6(8)	Sm2-C201	275.5(10)
Sm1-C102	272.7(8)	Sm2-C202	273.0(11)
Sm1-C103	272.3(8)	Sm2-C203	272.4(10)
Sm1-C104	274.5(9)	Sm2-C204	271.6(9)
Sm1-C105	273.9(9)	Sm2-C205	271.9(10)
Sm1-C111	274.6(10)	Sm2-C211	272.3(11)
Sm1-C112	275.9(10)	Sm2-C212	274.5(11)
Sm1-C113	274.8(9)	Sm2-C213	275.2(11)
Sm1-C114	272.8(9)	Sm2-C214	276.2(10)
Sm1-C115	272.9(9)	Sm2-C215	272.4(11)
C1-O2	144.3(10)	C11-O1	145.6(10)
C2-C7	159.0(2)	C12-C17	156.1(12)
O1-Sm1-O2	76.8(2)	$(C1-H1)\cdots(C11-H11)$	75.9(13)
O1-Sm2-O2	76.7(2)	Cent1-Sm1-Cent2	127.5(2)
Sm1-O1-Sm2	103.8(2)	Cent3-Sm2-Cent4	120.7(2)
Sm1-O2-Sm2	102.7(2)		
01 · · · 02–C1	28.6(6)		
02···01-C11	10.7(5)		

mentholat-Liganden mit einer äquatorial angeordneten CHMe₂-Gruppe in beträchtliche sterische Wechselwirkung mit den Cp-Liganden treten. Doch auch in der tatsächlich realisierten Molekülstruktur vermögen die sehr sperrigen Isomenthylbausteine den Cp-Liganden räumlich offenbar nicht optial auszuweichen. So sind die zwei μ -OC₁₀H₁₉-Liganden eines Dimeren zumindest im Kristall von 5 so ausgerichtet, daß ihre CHMe₂-Gruppen bezogen auf die Sm₂O₂-Ebene synfacial zu liegen kommen. Zudem sind beide Cyclohexylringe um ihre C-O-Bindungen signifikant gegeneinander verdreht, so daß die entsprechenden C-H-Vektoren (C(1)-H(1) bzw. C(11)-H(11)) mit der O \cdots O'-Achse ver-

Abb. 1. ORTEP-Zeichnung von 5: Sm_2O_2 -Fragment parallel zur Zeichenebene.

Abb. 2. ORTEP-Zeichnung von 5: Sm_2O_2 -Fragment senkrecht zur Zeichenebene.

schiedene Winkel einschließen (Tabelle 2). Auch verlaufen die O-C-Vektoren nicht streng kolinear mit der O···O'-Achse. Die vier Cp-Liganden des dimeren Moleküls, die paarweise auf Deckung bzw. auf Lücke zueinander stehen (vgl. Abb. 2), bilden deutlich verschiedene cent-Sm-cent'-Winkel aus (Tabelle 2). Gleichwohl weichen die individuellen Sm-C(Cp)-Abstände nur wenig von ihren jeweiligen Mittelwerten ab (2.727, 2.747, 2.721, 2.749 Å), die sich nur unwesentlich von bekannten Sm-C(Cp)-Mittelwerten unterscheiden (z.B. 2.72 Å in [(CH₃C₅H₄)₂SmC₂CMe₃]₂ [7] bzw. 2.76 in (C₅H₅)₃Sm [8]).

Die einzelnen Sm–O-Abstände von **5** sind am ehesten mit den Sm–O(P)-Abständen der Verbindung [{(C_5 -Me_5)_2Sm(OPPh_3)}_2(μ -OCH=CHO)] (**9**; 2.37–2.39 Å [9]) bzw. auch mit dem Pr–O-Abstand in **7a** (2.41 Å [3]) vergleichbar und nicht mit den sehr kurzen Sm–O (CH)-Abständen von **9** (2.147–2.179 Å [9]) bzw. auch nicht mit dem deutlich längeren Sm–O(THF)-Abstand in [{(C_5Me_5)_2Sm · THF}_2{ μ -(OSiMe_2)_2O}] (2.465 Å [10]). Der Sm · · · Sm-Abstand ist mit 3.648 Å sogar noch kürzer als der Yb · · · Yb-Abstand im Yb-Homologen von **6** (d.h. in **6b**: 3.695 Å [2]).

Die Molekülstruktur von 6 dürfte der von 6a (Ln = Pr; Pr \cdots Pr-Abstand; 3.925 Å [3]) bzw. auch der von 6b (Ln = Yb [2]) entsprechen [11], so daß für 6 ein etwas kürzerer Ln \cdots Ln-Abstand als für 6a zu erwarten ist. Gemeinsamkeiten von 5 und 6 wären somit ihr zweikerniger Aufbau mit den jeweils sauerstofftragenden μ -Alkoxid-C-Atomen als den dem Zentralmetallion nächstgelegenen Chiralitätszentren. Allerdings verleiht die nur in 6 und seinen Homologen zu erwartende zusätzliche (Carboxylat)O \rightarrow Sm-Bindung [2,3] diesem Molekül eine besondere Steifheit. Komplex 5 enthält andererseits noch drei entferntere, wohldefinierte Chiralitätszentren.

Komplex 7 sollte isostrukturell mit seinen bereits röntgenographisch untersuchten Homologen 7a und 7b (Ln = Pr bzw. Yb [3]) sein. Diese sind monomere 1:1-Addukte vom Typ $Cp_3Ln \cdot L$, in denen ein jeweils enantiomerenreines Methyl-*p*-tolylsulfoxid-Molekül (L)

Tabelle 3a ¹H-NMR-Daten von 5 (chemische Verschiebungen δ bezogen auf internes TMS)

$\overline{5(CD_2Cl_2)}$	$5(C_6D_5CD_3)$	a
- 17,69	- 17,05	(s, 1H)
- 16,04	- 16,58	(d, 1H)
-15,04	- 15,47	(m/s, 1H)
-11,13	-11,27	(t, 1H)
- 8,77	- 8,96	(s, 1H)
-7,05	-7,36	(t, 1H)
- 4,06	- 4,25	(d, 1H)
-3,82	- 3,98	(q/m, 1H)
-3,56	-3,83	(q/d, 1H)
-2,71	-2,88	(d, 1H)
-2,45	-2,44	(m/d, 3H)
-2,15	-2,24	(m, 6H)
12,40	12,58	(s, 10H)

^a Multiplizität und relative Intensitäten für die Spektren in CD_2Cl_2 und $C_6D_5CD_3$.

nur über sein Sauerstoffatom an das Ln-Zentrum koordiniert ist (Abstände: Pr–O 2.408, Yb–O 2.290 Å; Winkel Pr–O–S 143.0, Yb–O–S 140.6° [3]). Auch in dieser Verbindungsklasse befindet sich das Chiralitätszentrum in einem jeweils festen Abstand vom Ln-Atom (Pr · · · S: 3.722 Å, Yb · · · S: 3.591 Å). Der Pr–O-Abstand von **7a** liegt in der Nähe des Pr–O(Alkoxid)-Werts von **6a** (2.405–2.425 Å [3]).

4. ¹H-NMR-Spektren

Trotz seines üblichen Paramagnetismus von etwa 1.55-1.65 B.M. bewirkt das Sm³⁺-Ion in den ¹H-NMR-Spektren von Organosamarium(III)-Komplexen keine sehr ausgeprägten Signalauffächerungen [13]. Entgegen dieser Erfahrung, der die Spektren von **6** und **7** folgen, liegen die einzelnen Resonanzen von **5** (gelöst in CD₂Cl₂ oder C₆D₅CD₃) vergleichsweise weit auseinander (Tabelle 3). Die Zahl der Menthylprotonensignale und die relativen Signalintensitäten entsprechen grundsätzlich der Erwartung für Ein- und Zweikernkomplexe mit jeweils äquivalenten, räumlich fixierten bzw. auf der NMR-Zeitskala schnell um ihre C-O-Bindungen rotierenden (bzw. auch nur oszillierenden) OC₁₀H₁₉-Gruppen. Das gefundene Signalmuster (vgl.

weiter unter) spricht für das Vorliegen einer singulären Isomenthylgruppe in nur einer Konformation. Auch das Auftreten nur eines C₅H₅-Protonensignals erscheint nicht mit der Annahme merklich behinderter Rotationen um die C-O-Bindungen (vgl. Abschn. 3) vereinbar. Allerdings zeigt auch in den ¹H-NMR-Spektren von 6 keine der grundsätzlich prochiralen Gruppen (CH₂R und CMe₂H) eine hier zu erwartende diastereotope Signalaufspaltung [14]. Im Gegensatz zu den Spektren von 6a [3] und 6b [2] erscheint sogar im Spektrum von 6 nur eine C₅H₅-Resonanz. Hier sollten zwei nichtäquivalente C₅H₅-Liganden vorliegen [2,3]. Bekannt ist jedoch aus der Literatur, daß auch verschiedene $(CH_{3}C_{5}H_{4})_{2}Sm(III)$ -Derivate entweder zwei ungewöhnlich eng zusammenliegende, scharfe C₅H₄-Ringprotonensignale oder sogar nur ein Singulett zeigen [13].

Die Lage der C_5H_5 -Resonanz von 5 entspricht der schon früher beschriebener $(C_5H_5)_2$ Sm(III)-Derivate [7,15]. Die Multiplett-Aufspaltung der meisten Resonanzen des Isomenthylliganden erlaubt eine in sich schlüssige Zuordnung (vgl. Experimenteller Teil): Sechs der Resonanzen sind paramagnetisch signifikant verschoben (δ : -7 bis - 18 ppm), so daß sie den fünf zum O-Atom cisoiden H-Atomen sowie den ebenfalls besonders metallnahen H-Atomen von C(1) bzw. C(11) zugeordnet werden können. Den zum O-Atom transoid orientierten vier Cyclohexyl-H-Atomen und den insgesamt drei CH₃-Gruppen sollten dann die sechs paramagnetisch schwächer verschobenen (δ : -2.24 bis -4.25 ppm) Resonanzen (mit den relativen Intensitäten 1:1:1:1:3:6) zuzuschreiben sein.

Das ¹H-NMR-Spektrum einer Lösung von 5 in THFd₈ zeigte zwei Singuletts im Bereich der Cp-Protonenresonanz (12–13 ppm; I_{rel} ca. 3:1) und etwa 13 weitere Signale von unterschiedlicher, teilweise auffälliger Breite im üblichen Resonanzbereich diamagnetischer Proben (1–7 ppm). Möglicherweise hat somit auch 5 (wie bereits für 1 nachgewiesen [1]) mit dem Tetrahydrofuran reagiert [16].

Ein schlüssige Zuordnung der Resonanzen von 6 gelingt auf der Grundlage von Vergleichen mit den Spektren von paramagnetischem 6b [2] und des diamagnetischen Homologen 6c (Ln = Lu) (vgl. Experimenteller Teil). Entsprechendes gilt für das ¹H-NMR-

Tabelle 3b

¹H-NMR-Daten von 6, im Vergleich mit denen von 6c (diamagnetisch) sowie von 7, verglichen mit Daten des freien Liganden MTSO = Methyltolyl-sulfoxid

$\overline{6(\mathrm{CD}_2\mathrm{Cl}_2)}$	$6c (CD_2Cl_2)$	a	$7 (CD_2Cl_2)$	MTSO (CDCl ₃)	ь	
- 1,42	1,63	(d, 3H)	_			
0,49	1,07	(d, 6H)	-0,16	2,42	(3H)	
0,66	4,77	(q, 1H)	2,21	2,70	(3H)	
1,10	2,10	(m, 1H)	5,11	7.32	(2H)	
2,77	4,18	(d.dd/2H)	6,89	7,55	(2H)	
8,69	5,92	(s, 10H)	11,41	,	(15H)	

^a Multiplizität und I_{rel} für 6 und 6c; ^b I_{rel} für 7 und MTSO.

5. f-f-Ligandenfeldübergänge: chiroptische Effekte (f-f-CD)

Während KF-theoretisch untermauerte Untersuchungen relativ langwelliger f-f-Anregungen ($\nu < 20.000$ cm^{-1}) von Sm(III)-Organylen des Typs [Cp₃Sm · L_n] $(n = 1 \text{ bzw. } 2; \text{ KF-Symmetrie } C_{3v} \text{ bzw. } D_{3h})$ bereits erfolgt sind [18], stehen entsprechende Studien der weniger symmetrischen [Cp₂SmX]_n-Systeme noch aus. Die reinen Absorptionsspektren der Komplexe 5, 6 und 7 zeigen unterhalb von ca. 21.000 cm^{-1} durchweg schwache ($\varepsilon_m < 1.5$) f-f-Banden in den grundsätzlich zu erwartenden [19] Frequenzbereichen (vgl. Tabelle 4). In allen drei Fällen bewirkt die breite langwellige Flanke einer sehr intensiven Charge-Transfer (CT)-Bande, daß oberhalb von ca. 24.000, 28.500 bzw. 26.000 cm⁻¹ sämtliche f-f-Absorptionsbanden vollständig unter den breiten CT-Signalen verschwinden (für 5: vgl. Abbildung 3). Komplex 7 zeigt eine zusätzliche sehr breite, doch nur mäßig intensive (ε_m ca. 10²) CT-Bande bei 23.530 cm⁻¹. Die Absorptionsmaxima sechs weiterer, sehr schwacher f-f-Banden von 7 zwischen 10300 und 11500 cm⁻¹ (in Tabelle 5 nicht mit aufgeführt) sind gut mit den f-f-Banden der KF-theoretisch schon näher untersuchten Verbindung Cp₃SmCNC₆H₁₁ [20] korrelierbar. Komplex 5 zeigt unterhalb von 19400 cm⁻¹ (sowie auch zwischen 22700 und 23800 cm⁻¹) nur extrem schwache f-f-Banden ($\varepsilon_m < 0.1$).

Obwohl die 4f-Elektronen eines Sm³⁺-Ions eventuelle Asymmetriezentren in dessen Ligandensphäre nur durch relativ schwache chiroptische Effekte widerspiegeln sollten [21], bildet eine kombinierte Studie der Absorptionsspektren und des Circulardichroismus (CD) eines enantiomerenreinen kristallinen Sm(III)-Komplexes [19] eine der bis heute erfolgreichsten chiroptischen Untersuchungen von Lanthanoid(III)-Komplexen.

Das chiroptische Verhalten der drei eindeutig chiralen, jeweils in Lösung vermessenen Komplexe 5, 6 und 7 äußert sich unterschiedlich. Der einkernige Komplex 7 erweist sich—wie auch seine Homologen 7a (Ln = Pr) und 7b (Ln = Yb) [3]—als CD-inaktiv. Auch dem schwachen CT-Übergang von 7 bei 23530 cm⁻¹ kann höchstens ein $\Delta \varepsilon_m$ -Wert < 0.05 zukommen. Ein denkbarer Grund für die CD-Inaktivität der drei Sulfoxid-Addukte [22] könnte sein, daß hier—im Sinne eines reinen Vicinaleffekts [23]—nur ein einziges dissymetrisches Atom in der Ligandensphäre des Sm(III)-Chromophors vorliegt. Hinzukommen mag, daß das hier allein chirale Sulfoxid ein Neutralligand ist und als solcher die 4f-"Leucht" elektronen des Sm³⁺-Ions noch Tabelle 4 Fraktionelle Atomkoordinaten (×10⁴) und isotrope Temperaturfaktoren (Å² ×10³) von 5

	x	<i>y</i>	z	U _{eq}
Sm(1)	7972(1)	913(1)	463(1)	33(1)
Sm(2)	6653(1)	1048(1)	2014(1)	34(1)
O(1)	8044(5)	1687(4)	1449(2)	35(1)
O(2)	6576(5)	248(4)	1028(2)	35(1)
C(101)	6954(8)	1363(7)	- 646(4)	49(2)
C(102)	7985(9)	1763(7)	- 701(4)	52(2)
C(103)	8051(9)	2493(6)	- 261(4)	54(3)
C(104)	7068(9)	2563(7)	64(4)	52(2)
C(105)	6396(8)	1863(7)	- 177(4)	52(3)
C(111)	9003(9)	-647(8)	8(5)	59(3)
C(112)	9681(8)	100(9)	- 165(5)	59(3)
C(113)	10114(7)	461(8)	396(5)	54(3)
C(114)	9709(8)	- 47(7)	911(4)	50(3)
C(115)	9021(7)	- 738(6)	662(5)	48(2)
C(201)	6783(12)	-685(8)	2584(5)	73(4)
C(202)	7838(12)	- 358(10)	2544(6)	81(4)
C(203)	7937(11)	368(10)	2958(7)	83(4)
C(204)	6976(15)	501(10)	3240(5)	88(5)
C(205)	6259(11)	-117(11)	3013(6)	85(4)
C(211)	4804(11)	1943(10)	1683(7)	78(4)
C(212)	5529(10)	2660(9)	1767(5)	66(3)
C(213)	5759(9)	2708(8)	2417(6)	61(3)
C(214)	5158(10)	2028(9)	2722(6)	74(4)
C(215)	4583(10)	1539(10)	2271(9)	91(5)
C(1)	6114(7)	- 674(6)	980(4)	37(2)
C(2)	6127(8)	- 1035(8)	288(4)	54(2)
C(3)	5287(9)	- 534(9)	-119(4)	66(3)
C(4)	4174(9)	- 616(10)	147(5)	75(4)
C(5)	4145(8)	- 235(9)	823(6)	69(3)
C(6)	4968(7)	- 686(7)	1233(4)	47(2)
C(7)	6021(10)	- 2142(8)	260(5)	65(3)
C(8)	6793(12)	- 2674(8)	686(7)	100(5)
C(9)	6122(13)	- 2490(11)	- 417(7)	127(6)
C(10)	3031(9)	- 298(11)	1108(7)	103(5)
C(11)	9034(7)	2225(6)	1495(4)	38(2)
C(12)	9509(7)	2117(7)	2171(4)	44(2)
C(13)	8824(9)	2645(8)	2639(4)	58(3)
C(14)	8720(11)	3692(7)	2461(5)	69(3)
C(15)	8240(10)	3807(6)	1810(5)	64(3)
C(16)	8884(8)	3263(6)	1326(4)	44(2)
C(17)	10723(8)	2386(7)	2197(5)	52(3)
C(18)	11410(8)	1737(8)	1791(5)	69(3)
C(19)	11109(10)	2344(9)	2902(6)	87(4)
C(20)	8153(13)	4817(7)	1602(7)	97(5)

schwächer beeinflussen könnte als ein formal anionischer Ligand.

Die Komplexe 5 und 6 zeigen oberhalb von ca. 17000 cm⁻¹ deutlich wahrnehmbare Cotton-Effekte (vgl. hierzu Abb. 4). Wegen des vergleichsweise schwächeren "Störeinflusses" der CT-Bande von 6 ist dessen CD fast bis 27000 cm⁻¹ hin erkennbar, während das kurzwelligste noch wahrnehmbare Signal von 5 bei 23832 cm⁻¹ liegt. Das f-f-Spektrum von 6, das zugleich reicher an reinen f-f-Übergängen als die Spektren von 5 und 7 ist, enthält etwa dreimal soviele CD-Signale wie das Spektrum von 5. Hervorzuheben

Sm ³⁺ -	lup20mm m-1	DC ₁₀ H ₁₉)] ₂ (5)			[Cp ₂ Sm(μ-	OCH(Me)COO	¹ Bu)] ₂ (6)		Cp ₃ SmOS(1	Me)- <i>p</i> -C ₆ H ₄ Me (7)
Term ^a	ν(E) ^b	em c	ν(CD) ^d	$10^4 \times \Delta \varepsilon_m^{\epsilon}$	ν(E) ^b	Em c	<i>ν</i> (CD) ^d	$10^4 \times \Delta \varepsilon_m^{\circ}$	ν(E) ^b	€m ^c
					16750	0,5				
⁴ G _{5/2}							17542	- 0,9	17365	0,15
							17668	+ 0,0 - 1.6	17571	0,6
					17889	0,4	17793	+ 0,5		
${}^{4}F_{3/2}$					18868	0,4	18622	-0,6	18963	0,7
${}^{4}G_{7/2}$	19478	0,3			19685	0,8	19724	+ 1,2		
	19887	0,4			19920	0,8	19861	-0,9		
4.	19998	0,8			20040	0,7	20080	+ 0,6		
19/2	00000	č			70702	0,8 0,0	21000			
⁴ M.c	20302 20489	0,4			20450	0,0 8,0	20429	+ 1,1 - 0,6	20482	2.3
111 12/2	20402	0,0 0,0			201576	0,6		2	2	L.
	20768	0.2	20807	- 2.7	20704	0.5	20704	-0.5		
		1		î	20921	0.6	20964	+ 1,2	20833	1,3
41	21191	1.0			21187	0,5	21164	+ 2,2	21276	1,5
7/11-			21617	-2,7	21367	0,5			21930	3,7
⁴ I1372	21846	4,3			21882	0,2	21739	+1,6		
- / (1	22044	5,1	21949	- 1,85	21978	0,5	21929	- 2,2	22124	7,4
${}^{4}F_{5/2}$	22187	5,1	22193	- 0,8	22472	0,8	22624	- 4,4		
⁴ M _{17/2}	22663	0,5	22453	- 5,9						
${}^{4}G_{9/2}$			22676	- 5,0	22779	1,3				
⁴ 1 15/2					23041	2,4	22903	- 5,6		
			23364	-1,1			23202	- 4,1		·
			23552	+1,8	23530	1,0	23502	+ 1,9	23529	102.3 1
							23753	+ 5,9		
P _{5/2}	23864	1,4	23832	+3,6	23923	3,4	23952	- 6,2	24096	0,9
${}^{4}L_{13/2}$					24390	3,5	24301	- 1,2		
					24570	3,6	24600	- 1,2	24630	4,3
^o P _{3/2}							24752	+1,9	24752	1,8
${}^{4}\mathrm{F}_{7/2}$					24876	5,9	24876	-0,9		
${}^{4}K_{11/2}$							25078	- 3,1		
							25510	- 9,4	25253	2,2
⁴ G _{11/2}							25694	- 19,3	25641	1,8
					25893	25,2	25840	+ 46,8	25840	1,8
									25974	0,9
							26315	- 4,4		
							26525	+ 8,1		
					26881	27,7	26810	+ 7,5		
$^{+}D_{3/2}$					27174	34,0				
					28328	46,8				

202

A. Steudel et al. / Journal of Organometallic Chemistry 510 (1996) 197-206

sind die relativ hohen "CD-Signaldichten" von 6 um ca. 17500 bzw. 25500 cm⁻¹, aber auch von 5 um 23500 cm⁻¹. Während 5 und 6 unterhalb von 22000 cm⁻¹ Cotton-Effekte mit $|\Delta \varepsilon_m|$ -Werten $< 5.0 \times 10^{-4}$ zeigen, werden bei höheren Frequenzen deutlich größere $|\Delta \varepsilon_m|$ = 46.8 × 10⁻⁴ bei 25840 cm⁻¹; es liegt nahe, hier an einen angeregten Zustand zu denken, der nicht mehr aus einer reinen [Xe]4f⁵-Konfiguration des Sm³⁺-Ions hervorgeht. Formal läßt sich feststellen, daß in den hier untersuchten Zweikernkomplexen jedes {(μ -OR)₂SmCp₂}-Fragment als ein Chelatligand der zweiten Cp₂Sm-Einheit angesehen werden kann, so daß in den Komplexen 5 und 6 jedes Samariumion für sich formal einen Chelatliganden mit jeweils *zwei* optisch aktiven Zentren trägt. Eine allgemein akzeptierte Regel [23]

besagt, daß die Beeinflussung der Leuchtelektronen eines Zentralmetalls auf Grund von Dissymmetrien in der Ligandensphäre gemäß der folgenden Abstufung zunimmt: "Vicinaleffekt" (*ein* singuläres Asymmetriezentrum im Liganden) < "Chelatisierungseffekt" (mindestens ein dissymmetrischer Chelatligand) < "konfigurativer Effekt" (das Zentralmetallion selbst wird zu einem Asymmetriezentrum).

In THF gelöstes 5 (von etwa gleiche Konzentration wie in CH_2Cl_2) zeigt signifikant veränderte Absorptions- und CD-Spektren. In Absorption dominiert ein nicht CD-sensitiver, scharfer f-f-Übergang bei 24166 cm⁻¹, und der bei 25975 cm⁻¹ beginnende CT-Bereich hat nur zwei schwächere "Vorbanden" (20450 und 22730 cm⁻¹). Im CD-Spektrum (20805–24095 cm⁻¹) zeigen sich (mit Ausnahme zweier CD-Signale bei

Abb. 3. (a) Absorptionsspektrum von 5 zwischen 17000 und 21000 cm⁻¹; (b) Absorptionsspektrum von 5 zwischen 20000 und 24000 cm⁻¹ (gleicher Wellenzahl-Maßstab wie in Abb. 4).

Abb. 4. CD-Spektrum (f-f-Übergänge) von 5 (vgl. auch Tabelle 5).

23552 und 23832 cm⁻¹) mehrere weitere, sehr schwache Cotton-Effekte, die nicht mit denen von 5 in CH_2Cl_2 -Lösung zusammenfallen.

6. Schlußbemerkung

Unsere röntgenographischen und ¹H-NMR-spektroskopischen Ergebnisse zeigen übereinstimmend, daß sich der Isomenthylbaustein während der Synthese von 5 unter bemerkenswert milden Bedingungen ($-80^{\circ}C <$ Temp. $< 20^{\circ}C$) aus der Vorzugskonformation des freien Alkohols (CH₃-Gruppe äquatorial) in die alternative Konformation mit einem axialen OSm₂ ··· -Substituenten umlagert. Eine vergleichende ¹H-NMR-Studie (360 MHz, Lsgsm. CDCl₃, Raumtemp.) von Isomenthol und zwei Stereoisomeren ergab, daß die stets ideal beobachtbare Resonanz des Protons von C(1): (-)– Menthol, δ 3.415 (1H, ddd, ³J = 5.0 Hz); (+)–Isomenthol, δ 3.800 (1H, dt, ³J = 3.8 Hz); (+)– Neomenthol, δ 4.110 (1H, q, ³J = 2.5 Hz) für das Vorliegen jeweils nur *einer* Konformation (d.h. für Isomenthol und Menthol der Konformation mit einer äquatorialen OH-Gruppe) erwarten läßt [24].

Die ⁴H-NMR-Spektren von **5** (Lsgsm.: CD_2Cl_2 und $C_6D_5CD_3$) spiegeln die relativ komplizierte Molekülstruktur von **5** im Kristallverband nicht mehr wider. Das Erscheinungsbild der Elementarzelle [27] spricht eher für signifikante intermolekulare Wechselwirkungen im Gitter als für intramolekulares sterisches Gedränge im freien Molekül. Die überraschend untersschiedliche CD-Sensitivität der Zweikernkomplexe **5** und **6** könnte somit darauf beruhen, daß **6** erwartungsgemäß isostrukturell mit seinen ungewöhnlich starr aufgebauten Homologen **6a** [3] und **6b** [2] ist, während in **5** u.a. wohl praktisch freie Drehbarkeit um die C(1)–O-Bindung gewährleistet ist. Hinzu kommt, daß das UV-VIS-Spektrum von **6** weniger von langwelligen CT-Übergängen "belastet" ist, als das von **5**. Komplex 5 reagiert—im Gegensatz zu 6—offenbar mit Tetrahydrofuran und möglicherweise auch mit anderen Lewis-Basen. Inwieweit hier Parallelen zum Verhalten von 1 vorliegen, läßt sich erst nach der vollständigen Untersuchung der Reaktionsprodukte angeben.

7. Experimenteller Teil

Sämtliche Operationen wurden unter strikter Schutzgasatmosphäre (N_2 , Schlenk-Technik; Meßprobenvorbereitung in Glove Box von M. Braun) durchgeführt. FT-IR-Spektrometer: Perkin-Elmer Mod. 1720 (KBr-Pellets bzw. Nujol-Anreibungen); NMR-Spektrometer: Bruker Mod. WP 80 und AM 360 sowie Vaian Gemini 200; NIR/VIS-Spektralphotometer: Cary Mod. 17 und SE; CD: Jasco Mod. J200-D mit DP-500 N-Datenprozessor; MS: V.G. Mod. ZAB 2F.

7.1. $[(C_5H_5)_2 Sm\{\mu - (1S, 2R, 5R) - (+) - OC_{10}H_{19}\}]_2$ (5)

705.2 mg (2.0 mmol) $(C_5H_5)_3$ Sm, gelöst in 50 ml Toluol, werden auf -80°C gekühlt und tropfenweise mit einer Lösung von 313.2 mg (2.0 mmol) (1S,2R,5R)-(+)-Isomenthol (Merck-Schuchardt; sublimiert, Kontrolle von $[\alpha]_{D}^{20}$ in 30 ml Toluol versetzt: Farbumschlag von orange nach gelb. Nach 1 h Rühren bei Raumtemp, wird die gelbe Lösung filtriert und auf ca. 5 ml eingeengt. Alles nach ca. 2 Tagen bei 0°C auskristallisierte Produkt wird nach Abdekantieren der Mutterlauge mit wenig kaltem n-Hexan gewaschen und 8 h lang am Hochvakuum getrocknet. Ausbeute: 348.6 mg (80% d. Th.), Fp. 168°C (unter Zersetzung). (Gef.: C, 54.29; H, 6.66. C₂₀H₂₉OSm ber.: C, 55.12; H, C, 54.29; H, 0.00. $C_{20}H_{29}$ OSIT DEL. C, 53.12, H, 6.71%). ¹H-NMR (200 MHz, $C_6D_5CD_3$): -17.05 s, 1H, H(1)_{eq}; -16.60 d, 1H, ³J = 12.0 Hz, H(6)_{eq}; -15.47 s, 1H, H(2)_{eq}; -11.27 t, 1H, ³J = 12.0 Hz, H(5)_{ax}; -8.96 s, 1H, H(3)_{ax}; -7.36 t, 1H, ³J = 10.0 Hz, H(4)_{eq}; -4.28 d, 1H, ³J = 12.0 Hz, H(6)_{ax}; -3.98 m, 1H, $H(3)_{ea}$; -3.79 m, 1H, $H(4)_{ax}$; -2.89 d, 1H, ${}^{3}J = 12.7$ Hz, H(7); -2.45 d, 3H, ${}^{3}J = 6.0$ Hz, C(5)H₃; -2.24 m, 6H, C(8,9)H₃; +12.58 s, 10H, C₅H₅. MS (für ¹⁵²Sm): m/z 806 (M⁺-C₅H₅; 1%), 437 (M²⁺) $M/2^+$, 2%), 347 (Cp₃Sm⁺, 10%), 282 (Cp₂Sm⁺, 85%), 217 (CpSm⁺, 80.5%), 66 (CpH⁺, 100%), 65(Cp⁺, 78%), sieben weitere Isomenthylfragmente, m/z 138, 123, 95, 82, 71, 69, 55 (9, 19, 69, 30, 97, 47, 59%).

7.2. $[(C_5H_5)_2 Sm\{\mu-(R)-(+)-OCH(CH_3)COOCH_2CH-(CH_3)_2\}]_2$ (6)

Darstellung in Anlehnung an die für 6a (Ln = Yb [2]) beschriebene Vorschrift. Einsatz von 681 mg (1.97

mmol) $(C_5H_5)_3$ Sm und 288 mg (1.97 mmol) (R)-(+)-Isobutyllactat (Aldrich), gelöst in insgesamt 50 ml CH₂Cl₂. Zwischen – 30 und – 20°C Farbumschlag von orange nach blaßgelb; Ausbeute: 762 mg (90.8% d.Th.); Zersetzung ab 185°C. ¹H-NMR (80 MHz, CD₂Cl₂): – 1.42 d, 3H, ³J = 7.1 Hz, CH₃; 0.49 d, 6H, ³J = 6.4 Hz, CH₃(Isobutyl); 0.66 q, 1H, ³J = 7.1 Hz, α -CH; 1.10 m, 1H, Signalbreite insges. 44 Hz, β -CH (Isobutyl); 2.77 d, 2H, ³J = 6.0 Hz, CH₂; 8.6 s, 10H, C₅H₅.

7.3. $[(C_5H_5)_2Lu\{\mu-(R)-(+)-OCH(CH_3)COOCH_2CH-(CH_3)_2\}]_2$ (6c)

Darstellung analog zu der von 6. Einsatz von 365.2 mg (0.986 mmol) $(C_5H_5)_3Lu$, 0.148 ml (144 mg = 0.986 mmol) (R)-(+)-Isobutyllactat und insgesamt 50 ml CH₂Cl₂. Ausbeute: 436 mg (98.2% d. Th.). (Gef.: C, 41.36; H, 5.17; O, 7.82. $C_{17}H_{23}O_3Lu$ ber.: C, 45.34; H, 5.15; O, 10.66%). ¹H-NMR (80 MHz, CD₂Cl₂): 1.07 d, 6H, ³J) 6.8 Hz, CH₃ (Isobutyl); 1.63 d, 3H, ³J = 7.3 Hz, CH₃; 2.10 m, 1H, Signalbreite insges. 42.2 Hz, CH (Isobutyl); 4.18 dd, 2H, $\Delta \delta = 0.08$ ppm, ³J = 6.2 Hz, CH₂; 4.77 q, 1H, ³J = 7.3 Hz, α -C; 5.92 s, 10H, C₅H₅.

7.4. $[(C_5H_5)_3Sm\{(R)-(+)-OS(CH_3)-p-C_6H_4CH_3\}]$ (7)

670 mg (1.93 mmol) $(C_5H_5)_3$ Sm, gelöst in 40 ml THF, werden bei Raumtemp. mit einer 0.15 molaren Lösung von 298.8 mg (1.93 mmol) (R)-(+)-Methyl-*p*tolylsulfoxid (dargest. n. Refs. [3] u. [26]) in Toluol versetzt. Nach Rühren (1 h), Filtrieren und Einengen zur Trockene (Vac.) und zweimaligem Waschen mit je 5 ml *n*-Hexan wird der orangefarbene Feststoff 8 h lang am Hochvakuum getrocknet. Ausbeute: 954 mg (98.5% d. Th.). ¹H-NMR (80 MHz, CD₂Cl₂): -0.16 s, 3H; 2.21 s, 3H; 5.11 d, 2H, ³J = 7.9 Hz; 6.89 d, 2H, ³J = 7.9 Hz; 11.41 s, 15H. (R)-(+)-Methyl-*p*-toluolsulfoxid: Fp.: 74–75°C; $[\alpha]_D^{20}$: (+)144.1°, *c* = 2.12 mol 1⁻¹, Aceton (Lit.: (+)145°, *c* = 2 mol 1⁻¹, Aceton); IR: ν (SO), 1048 cm⁻¹; ¹H-NMR (80 MHz, CDCl₃) 2.42 s, 3H, (S)CH₃; 2.70 s, 3H, (*p*-Tolyl-)-CH₃; 7.32 d, 2H, ³J = 8.8 Hz, *o*-Tolyl-H's; 7.55 d, 2H, ³J = 8.1 Hz, *m*-Tolyl-H's.

7.5. Röntgenstrukturanalyse von 5

Ein für röntgenographische Untersuchungen geeigneter Einkristall von 5 wurde nach der Lindemann-Technik für die Röntgenstrukturanalyse präpapiert und bei 293 K an einem Hilger und Watts (Y290) Vierkreisdiffraktometer mit Mo K α -Strahlung und Graphit-Monochromator nach der $\Theta/2\Theta$ -Scan-Technik vermessen. Die angewendete dreidimensionale Patterson-Methode lieferte die Schweratompositionen. Die Sauerstoff- und Kohlenstoffatomanlagen wurden mit Differenz-Fourierund Least-Squares-Rechnungszyklen bestimmt [27]. Alle Nicht-H-Atome wurden anisotrop verfeinert, die H-Atome wurden berechnet und mit einem vorge-gebenen Bindungsabstand (C-H: 96 pm) und einem gemeinsamen Temperaturfaktor isotrop verfeinert. Tabelle 4 enthält die fraktionellen Atomkoordinaten und isotropen Temperaturfaktoren von 5 [25].

Dank

Wir danken Herrn Dr. J. Kopf, Hamburg, für strukturanalytische Ratschläge sowie dem Fonds der Chemischen Industrie, Frankfurt/M., und dem BMBF, Bonn, für finanzielle Unterstützung (insbesondere im Hinblick auf eine Modernisierung des JASCO-Dichrographen).

Literatur und Bemerkungen

- G. Massarweh und R.D. Fischer, J. Organomet. Chem., 444 (1993) 67.
- [2] J. Stehr und R.D. Fischer, J. Organomet. Chem., 459 (1993) 79.
- [3] J. Stehr, Dissertation, Universität Hamburg, 1993, S. 80 bzw. 15.
- [4] S.D. Stults, R.A. Andersen und A. Zalkin, Organometallics, 9 (1990) 1623.
- [5] Basierend auf einer entsprechenden Recherche anhand des Cambridge Structural Database System.
- [6] G. Karta, K.T. Go, A.K. Bose und M.S. Tibbetts, J. Chem. Soc., Perkin Trans. II, (1976) 717.
- [7] J.W. Evans, I. Bloom, W.E. Hunter und J.L. Altwood, Organometallics, 2 (1983) 1671.
- [8] V.K. Bel'skij, Y.K. Gun'ko, G.D. Solveichik und B.M. Bulychev, Metalloorg. Khim., 4 (1991) 577; Engl. Übers, Organomet. Chem., USSR, 4 (1991) 281.
- [9] W.J. Evans, J.W. Grate und R.J. Doedens, J. Am. Chem. Soc., 107 (1985) 1671.
- [10] W.J. Evans, T.A. Ulibarri und J.W. Ziller, Organometallics, 10 (1991) 134.
- [11] Eine, weniger wahrscheinliche, Strukturalternative wäre ein zwölfgliedriger Ring mit zwei terminal Alkoxid-O-Atomen; vgl. hierzu Ref. [12].
- [12] G. Erker, S. Dehnicke, M. Rump, C. Krüger, S. Werner und M. Nolte, Angew. Chem., 103 (1991) 1371, Angew. Chem., Int. Ed. Engl., 30 (1991) 1349.
- [13] vgl. R.D. Fischer, in T.J. Marks und I.L. Fragalà (Herausg.), Fundamental and Technological Aspects of Organo-f-Element Chemistry, D. Reidel Publ. Co., Dordrecht, 1985, S. 293.
- [14] Zum Vergleich: Komplex 6a zeigt bei 280 K zwei C_5H_5 -, CH_2 und CH_3 -Resonanzen, die jeweils 4.8, 1.2 und 0.09 ppm auseinanderliegen [2].
- [15] H. Schumann und G. Jeske, Z. Naturforsch., 40b (1985) 1490.
- [16] Untersuchungen mit dem Ziel der Isolierung der Reaktionsprodukte sind im Gange.
- [17] W.K. Wong, J.W. Guan, J.S. Ren, Q. Shen und W.T. Wong, *Polyhedron*, 12 (1993) 2749.
- [18] H. Schulz, H. Reddmann und H.-D. Amberger, J. Organomet. Chem., 461 (1993) 69 u. dort angeg. Lit.
- [19] S. May, M.F. Reid und F.S. Richardson, Mol. Phys., 62 (1987) 341.
- [20] H. Reddmann, H. Schultze, H.-D. Amberger, G.V. Shalimoff und N.M. Edelstein, J. Alloy. Comp., 180 (1992) 337.

- [21] F.S. Richardson, Inorg. Chem., 19 (1980) 2806.
- [22] 7a zeigt andeutungsweise zwei CD-Signale bei 20120 (positiv) und 20746 cm⁻¹ (negativ).
- [23] vgl. M. Nakamura, H. Okawa, S. Kida und S. Misumi, Bull. Chem. Soc. Jpn., 57 (1984) 3147; H. Okawa, M. Nakamura, Y. Shuin und S. Kida, Bull. Chem. Soc. Jpn., 59 (1986) 3657; W. Kuhn, in K. Freudenberg (Hrsg.), Stereochemie, Deuticke, Leipzig, 1933, S. 397.
- [24] Vgl. H. Feltkamp und N.C. Franklin, Tetrahedron, 21 (1965) 1541, Angew. Chem., 77 (1965) 798.
- [25] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-

senschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD404237, der Autoren und des Zeitschriftenzitats angefordert werden.

- [26] K.K. Andersen, J. Org. Chem., 29 (1964) 1953.
- [27] (a) G.M. Sheldrick, SHELXS-86 Program for crystal structure solution, Universität Göttingen; G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467. (b) G.M. Sheldrick, SHELXL-93, Acta Crystallogr., in Vorbereitung. (c) Molekülgrafik; SHELXLTL-Plus Release 4.21/V, Siemens Analytical X-ray Instruments Inc., Madison/Wisconsin, USA.